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Invariant Property Based Algorithm for Solving 
Linear Programming Problems 

Idorenyin Etukudo*, Mfoniso Umoren** 
 

           Abstract  
This paper presents an invariant property based algorithm (IPBA) for solving linear programming problems. This new algorithm which uses the 
principles of optimal designs of experiment shows that the direction vector used for obtaining optimal solution of a given linear programming 
problem (LPP) is the same as the gradient of the objective function, thereby disregarding the need for partitioning the experimental region, the 
calculation of the information matrices and their inverses, the calculation of the Hessian matrices and average information matrix as well as the 
response vector before the direction vector could be obtained as in the case of the modified super convergent line series algorithm (MSCLS L). 
This new algorithm further simplifies and guarantees the existence of a solution to the LPP. An illustrative example shows that IPBA for solving 
linear programming problems is quite efficient and the result obtained was similar to that obtained by using the simplex method or Karmarkar’s 
interior point method. 
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1 INTRODUCTION                                                                     

n this paper, an invariant property based algorithm (IPBA) 
for solving linear programming problems is presented. As 

in the modified super convergent line series algorithm 
(MSCLSL) for solving linear programming problems 
developed by [1], the new approach, also a line search 
algorithm makes use of the principles of optimal designs of 
experiment. In MSCLSL, the support points that make up the 
initial design matrix obtained from the entire experimental 
space or feasible region are partitioned into the desired groups 
of equal sizes. In IPBA, this partitioning is not necessary.  

To obtain a D-optimal non-singular design for a p-
parameter response function, [2] showed that we do not need 
more than  

 
p ≤ N ≤ ½p(p + 1) + 1      (1) 

 
support points from the entire experimental region. In his 
contribution, Onukogu in [3], [4] has shown that the number 
of support points for any response surface is given by   
 

n + 1 ≤ N ≤ ½n(n + 1) + 1    (2) 
 
In order to partition the entire experimental region 

into k* groups of equal sizes, Umoren and Etukudo in [5] 
showed that the total number of support points required is 

 
2k*(n+1) ≤ 2N ≤ k*n(n+1) + 2k*       (3) 

which now reduces to  

 
2(n+1) ≤ N ≤ n(n+1) + 2      (4) 

 
since the partitioning is not necessary. 

Etukudo and Umoren [6] used linear transformation 
of average information matrix and the response vector of the 
design to prove that the direction vector of a linear 
programming problem is invariant under choice of design 
matrices. This new algorithm takes advantage of this  
invariant property in MSCLSL since the direction vector for 
any linear programming problem is equivalent to the gradient 
vector or the coefficients of the objective function of the linear 
programming problem.  

In MSCLSL, the calculation of information matrices 
and their inverses, the Hessian matrices and normalized 
Hessian matrices, the average information matrix as well as 
the response vector are required in order to obtain the 
direction vector. These calculations are not needed in IPBA 
since the direction vector is the coefficient of the objective 
function. The importance of this is that, apart from removing 
the possibility of non-existence of inverses of partitioned 
matrices which will in turn truncate the existence of the 
solution to the linear programming problem, the IPBA 
performs better than MSCLSL judging from some measures of 
efficiency such as number of sequential steps, number of 
experiments performed, computer time required and 
computer storage space.  

 

2  INVARIANT PROPERTY BASED ALGORITHM 
FOR SOLVING LINEAR PROGRAMMING 
PROBLEMS 

This new algorithm, namely, invariant property based 
algorithm (IPBA) for solving linear programming problems, 
which is a line search algorithm, makes use of the principles of 
optimal designs of experiment. The sequential steps involved 
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in IPBA are as follows: 
  
Initialization Step: Initial design matrix.  
Choose an initial design matrix, X from a response surface 
such that  
 
                 2(n+1) ≤ N ≤ n(n+1) + 2      (5) 
 
where n = number of decision variables and N = number of 
support points, chosen in such a way that the constraints are 
not violated. 
 
Step 1:  Optimal starting point. 
Use the initial design matrix to determine the optimal starting 

point, *
1

x . 

 
Step 2:  Direction of movement. 
Input d = c, where c = (c1, c2, ..., cn) is the gradient of the 
objective function. Normalize d to obtain d*. 
 

Step 3: Determine the optimal step length, *
1
ρ .  

For a maximization problem, use 
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and for a minimization problem, use 
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where 
i

b=xA
i

 ,  i = 1, 2, ..., m is the ith constraint of the 

linear programming problem. 
 
Step 4:  First movement. 
 Make a move to the point  
 

                               **
1

*
1

*
2

dxx ρ−=
 
           (8)       

 
Step 5: Termination criteria

 
(a)   Compute f( *

2
x ) and f( *

1
x ).  

(b)   If |f( *
2

x ) - f( *
1

x )| < ε where ε = 0.0001, the algorithm 

terminates. If not, replace *
1

x  by *
2

x  and determine a new step 

length using the constraint that gave the optimum step length 

in step 3. If the new step length, *
2

ρ  = 0, then the optimizer 

had earlier been located in step 4.  
 

3  AN ILLUSTRATIVE EXAMPLE 
By using the invariant property based algorithm (IPBA) for 
solving linear programming problems, 
 
 Maximize f(x) = 850x1 + 350x2         (9) 
Subject to 
    8x1 +   5x2 ≤ 200  
           4x1 +     x2 ≤ 48    
    5x1 +   4x2 ≤ 80    
    3x1 +   5x2 ≤ 150    
             x1, x2 ≥ 0  
 
Initialization Step:  Initial design matrix  
Given the above response surface and n = 2, then   

 2(2+1) ≤ N≤ 2(2+1) + 2 

6 ≤ N≤ 8                  (10) 

By arbitrarily choosing 8 support points as long as they do not 

violate any of the constraints, we make up the initial design 

matrix 

 

          )11(
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Step 1:  Optimal starting point. 
Use the initial design matrix to determine the optimal starting 

point, *
1x  where 

∑
=

=
N

1m

'
mx*

mu*
1x                 (12)     

*
mu > 0;   ∑

=
=

N

1m

*
mu 1   
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mu , m = 1, 2, ..., N 

 'xx mmma = , m = 1, 2, ..., N 

Now,  
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Since 

∑
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mu , m = 1, 2, ..., N, then 

,0748.0
0896.0
0067.0*

1u ==
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3u ==  
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4u == ,  
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Hence, the optimal starting point is 
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Step 2: Direction of movement. 

We note that the direction vector, d is 
equivalent to the coefficient of the objective function, 
hence  
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 and by normalizing d such that d*′d* = 1, we have 
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Step 3: Determine the optimal step length, *
1
ρ  from 
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where  ib=x
i

A , i = 1, 2, ..., m is the ith constraint 

of the linear programming problem. 
 

For A1 = [8  5] and b1 = 200 
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              For A2 = [4  1] and b2 = 48 
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              For A3 = [5  4] and b3 = 80 
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For A4 = [3  5] and b4 = 150 
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Step 4:  First movement 
               Make a move to the point  
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Step 5:   Termination criteria 

(a)  Computing f(
*
2

x
) and f(

*
1

x
), we have  

                 f( *
2

x ) = 850(10.2042) + 350(7.1830) = 11,187.62 

                 f( *
1

x ) = 850(6.8376) + 350(5.7966) = 7,840.77 

 
(b)  Since  

   |f( *
2

x ) - f( *
1

x )| = |11,187.62 – 7,840.77|  

                                 = 3,346.85 > ε = 0.0001,  

we make a second move and replace *
1

x  by *
2

x  to 

determine a new step length using the constraint that 
gave the optimum step length in step 3. This is 
obtained as follows: 
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Since the new step length, *
2
ρ  = 0, then the optimizer had 

earlier been located in step 4. 
 

Hence, 
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x  and f( *

2
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x  and f( *
2

x ) = 10, 950.
   

 
 
 
4     CONCLUSION

 In this work, the primary objective of the study has been successfully 

executed, namely, the development of an invariant property based 

algorithm for solving linear programming problems. This method 

guarantees the existence of an optimizer with less computational 

effort since inverse of the constraint coefficient is not needed. In this 

solution technique of solving LPP, there is no need of partitioning the 

experimental region into segments since the calculation of the 

information matrices and their inverses, the calculation of the 

Hessian matrices and the average information matrix of those 

segments which are required in any algorithm using the principles of 

optimal designs of experiment are not necessary in IPBA.  

Again, the calculation of the response vector in order to 

obtain the direction vector was omitted here since it had been shown 

that the direction vector of a given LPP is the same as the gradient of 

the objective function of the LPP. The importance of this is that, 

apart from removing the possibility of non-existence of inverses of 

partitioned matrices which will in turn truncate the existence of the 

solution to the linear programming problem, the IPBA simplifies the 

attainment of an optimizer and converges at a faster rate. Result 

obtained from the numerical illustration gives 






=
7

10*
2

x  and  

f( *
2

x ) = 10, 950 which agrees with that obtained by using either the 

simplex method or the Karmarkar’s interior point method.   
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