
International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 945
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Invariant Property Based Algorithm for Solving
Linear Programming Problems

Idorenyin Etukudo*, Mfoniso Umoren**

 Abstract
This paper presents an invariant property based algorithm (IPBA) for solving linear programming problems. This new algorithm which uses the
principles of optimal designs of experiment shows that the direction vector used for obtaining optimal solution of a given linear programming
problem (LPP) is the same as the gradient of the objective function, thereby disregarding the need for partitioning the experimental region, the
calculation of the information matrices and their inverses, the calculation of the Hessian matrices and average information matrix as well as the
response vector before the direction vector could be obtained as in the case of the modified super convergent line series algorithm (MSCLS L).
This new algorithm further simplifies and guarantees the existence of a solution to the LPP. An illustrative example shows that IPBA for solving
linear programming problems is quite efficient and the result obtained was similar to that obtained by using the simplex method or Karmarkar’s
interior point method.

Keywords
Optimal designs, modified super convergent line series, invariant property, support points, direction vector, objective function gradient, linear programming.

——————————  ——————————

1 INTRODUCTION

n this paper, an invariant property based algorithm (IPBA)
for solving linear programming problems is presented. As

in the modified super convergent line series algorithm
(MSCLSL) for solving linear programming problems
developed by [1], the new approach, also a line search
algorithm makes use of the principles of optimal designs of
experiment. In MSCLSL, the support points that make up the
initial design matrix obtained from the entire experimental
space or feasible region are partitioned into the desired groups
of equal sizes. In IPBA, this partitioning is not necessary.

To obtain a D-optimal non-singular design for a p-
parameter response function, [2] showed that we do not need
more than

p ≤ N ≤ ½p(p + 1) + 1 (1)

support points from the entire experimental region. In his
contribution, Onukogu in [3], [4] has shown that the number
of support points for any response surface is given by

n + 1 ≤ N ≤ ½n(n + 1) + 1 (2)

In order to partition the entire experimental region

into k* groups of equal sizes, Umoren and Etukudo in [5]
showed that the total number of support points required is

2k*(n+1) ≤ 2N ≤ k*n(n+1) + 2k* (3)

which now reduces to

2(n+1) ≤ N ≤ n(n+1) + 2 (4)

since the partitioning is not necessary.

Etukudo and Umoren [6] used linear transformation
of average information matrix and the response vector of the
design to prove that the direction vector of a linear
programming problem is invariant under choice of design
matrices. This new algorithm takes advantage of this
invariant property in MSCLSL since the direction vector for
any linear programming problem is equivalent to the gradient
vector or the coefficients of the objective function of the linear
programming problem.

In MSCLSL, the calculation of information matrices
and their inverses, the Hessian matrices and normalized
Hessian matrices, the average information matrix as well as
the response vector are required in order to obtain the
direction vector. These calculations are not needed in IPBA
since the direction vector is the coefficient of the objective
function. The importance of this is that, apart from removing
the possibility of non-existence of inverses of partitioned
matrices which will in turn truncate the existence of the
solution to the linear programming problem, the IPBA
performs better than MSCLSL judging from some measures of
efficiency such as number of sequential steps, number of
experiments performed, computer time required and
computer storage space.

2 INVARIANT PROPERTY BASED ALGORITHM
FOR SOLVING LINEAR PROGRAMMING
PROBLEMS

This new algorithm, namely, invariant property based
algorithm (IPBA) for solving linear programming problems,
which is a line search algorithm, makes use of the principles of
optimal designs of experiment. The sequential steps involved

I

————————————————
*Department of Statistics

University of Calabar, Nigeria.
Email: nseobongidorenyin@gmail.com

**Department of Mathematics & Statistics

University of Uyo, Nigeria.

IJSER

http://www.ijser.org/
mailto:nseobongidorenyin@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 946
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

in IPBA are as follows:

Initialization Step: Initial design matrix.
Choose an initial design matrix, X from a response surface
such that

 2(n+1) ≤ N ≤ n(n+1) + 2 (5)

where n = number of decision variables and N = number of
support points, chosen in such a way that the constraints are
not violated.

Step 1: Optimal starting point.
Use the initial design matrix to determine the optimal starting

point, *
1

x .

Step 2: Direction of movement.
Input d = c, where c = (c1, c2, ..., cn) is the gradient of the
objective function. Normalize d to obtain d*.

Step 3: Determine the optimal step length, *
1
ρ .

For a maximization problem, use


















−

==
*

i

*

1i

dA

xA
i

i

*
1i

*
1

b
maxρρ (6)

and for a minimization problem, use


















−

==
*

i

*

1i

dA

xA
i

i

*
1i

*
1

b
minρρ (7)

where
i

b=xA
i

 , i = 1, 2, ..., m is the ith constraint of the

linear programming problem.

Step 4: First movement.
 Make a move to the point

 **
1

*
1

*
2

dxx ρ−=

 (8)

Step 5: Termination criteria

(a) Compute f(*

2
x) and f(*

1
x).

(b) If |f(*
2

x) - f(*
1

x)| < ε where ε = 0.0001, the algorithm

terminates. If not, replace *
1

x by *
2

x and determine a new step

length using the constraint that gave the optimum step length

in step 3. If the new step length, *
2

ρ = 0, then the optimizer

had earlier been located in step 4.

3 AN ILLUSTRATIVE EXAMPLE
By using the invariant property based algorithm (IPBA) for
solving linear programming problems,

 Maximize f(x) = 850x1 + 350x2 (9)
Subject to
 8x1 + 5x2 ≤ 200
 4x1 + x2 ≤ 48
 5x1 + 4x2 ≤ 80
 3x1 + 5x2 ≤ 150
 x1, x2 ≥ 0

Initialization Step: Initial design matrix
Given the above response surface and n = 2, then

 2(2+1) ≤ N≤ 2(2+1) + 2

6 ≤ N≤ 8 (10)

By arbitrarily choosing 8 support points as long as they do not

violate any of the constraints, we make up the initial design

matrix

)11(

3111
641
491
751
861
471
881
7101

X

































=

Step 1: Optimal starting point.
Use the initial design matrix to determine the optimal starting

point, *
1x where

∑
=

=
N

1m

'
mx*

mu*
1x (12)

*
mu > 0; ∑

=
=

N

1m

*
mu 1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 947
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

∑
=

−

−

=
N

1m

1
ma

1
ma*

mu , m = 1, 2, ..., N

 'xx mmma = , m = 1, 2, ..., N

Now,

[]

0.00671
1a

150,
7

10
1

7101'
1x1x1a

=−

=















==

[]

0078.01
2a

,129
8
8
1

881222a

=−

=















== 'xx

[]

0152.01
3a

,66
4
7
1

471333a

=−

=















== 'xx

[]

0099.01
4a

,101
8
6
1

861444a

=−

=















== 'xx

[]

0133.01
5a

,75
7
5
1

751555a

=−

=















== 'xx

[]

0102.01
6a

,98
4
9
1

491666a

=−

=















== 'xx

[]

0189.01
7a

,53
6
4
1

641777a

=−

=















== 'xx

[]

0076.01
8a

,131
3

11
1

3111888a

=−

=















== 'xx

0896.0

0076.00189.0...0078.00067.0
8

1m

1
ma

=

++++=∑
=

−

Since

∑
=

−

−

=
N

1m

1
ma

1
ma*

mu , m = 1, 2, ..., N, then

,0748.0
0896.0
0067.0*

1u ==

,0871.0
0896.0
0078.0*

2u ==

,1696.0
0896.0
0152.0*

3u ==

1105.0
0896.0
0099.0*

4u == ,

,1484.0
0896.0
0133.0*

5u ==

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 948
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

,1138.0
0896.0
0102.0*

6u ==

,2109.0
0896.0
0189.0*

7u ==

0848.0
0896.0
0076.0*

8u ==

Hence, the optimal starting point is

∑
=

=
N

1m

'
m

*
mu x*

1x
















+
















+
















=

4
7
1

1696.0
8
8
1

0871.0
7

10
1

0748.0
















+

8
6
1

1105.0















+
















+

4
9
1

1138.0
7
5
1

1484.0
















+
















+

3
11
1

0848.0
6
4
1

2109.0
















=

7966.5
8376.6
9999.0

*
1x

Step 2: Direction of movement.

We note that the direction vector, d is
equivalent to the coefficient of the objective function,
hence

 d =












2d
1d

 = 







350
850

 and by normalizing d such that d*′d* = 1, we have

 d* =





















+

+
=

















23502850

350

23502850

850

*
2d

*
1d

 







=

3808.0
9247.0

Step 3: Determine the optimal step length, *
1
ρ from


















−

==
*diA

*
1xiA ib

i
max*

1iρ*
1ρ

where ib=x
i

A , i = 1, 2, ..., m is the ith constraint

of the linear programming problem.

For A1 = [8 5] and b1 = 200

5050.12

3808.0
9247.0

5] [8

002
7966.5
8376.6

5] [8
*
11ρ*

1ρ −=




















−

==













 For A2 = [4 1] and b2 = 48

6408.3

3808.0
9247.0

7966.5
8376.6

ρρ
1] [4

481] [4
*
12

*
1

−=















==
























−

 For A3 = [5 4] and b3 = 80

6809.3

3808.0
9247.0

7966.5
8376.6

ρρ
4] [5

804] [5
*
13

*
1

−=















==
























−

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 949
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

For A4 = [3 5] and b4 = 150

 4840.21
3808.0
9247.0

7966.5
8376.6

ρρ
5] [3

1505] [3
*
14

*
1

−=















==
























−

 Hence, we choose the maximum step length,

6408.3ρρ *
12

*
1

−==

Step 4: First movement
 Make a move to the point

**
1

*
1

*
2

dxx ρ−=









=








−−




=

1830.7
2042.10

3808.0
9247.0)6408.3(

7966.5
8376.6

Step 5: Termination criteria

(a) Computing f(
*
2

x
) and f(

*
1

x
), we have

 f(*
2

x) = 850(10.2042) + 350(7.1830) = 11,187.62

 f(*
1

x) = 850(6.8376) + 350(5.7966) = 7,840.77

(b) Since

 |f(*
2

x) - f(*
1

x)| = |11,187.62 – 7,840.77|

 = 3,346.85 > ε = 0.0001,

we make a second move and replace *
1

x by *
2

x to

determine a new step length using the constraint that
gave the optimum step length in step 3. This is
obtained as follows:

0000049.0

3808.0
9247.0

1830.7
2042.10

ρρ
1] [4

481] [4
*
22

*
2

≈−=















==
























−

Since the new step length, *
2
ρ = 0, then the optimizer had

earlier been located in step 4.

Hence, 






=
1830.7
2042.10*

2
x and f(*

2
x) = 11,187.62 or








=
7

10*
2

x and f(*
2

x) = 10, 950.

4 CONCLUSION

 In this work, the primary objective of the study has been successfully

executed, namely, the development of an invariant property based

algorithm for solving linear programming problems. This method

guarantees the existence of an optimizer with less computational

effort since inverse of the constraint coefficient is not needed. In this

solution technique of solving LPP, there is no need of partitioning the

experimental region into segments since the calculation of the

information matrices and their inverses, the calculation of the

Hessian matrices and the average information matrix of those

segments which are required in any algorithm using the principles of

optimal designs of experiment are not necessary in IPBA.

Again, the calculation of the response vector in order to

obtain the direction vector was omitted here since it had been shown

that the direction vector of a given LPP is the same as the gradient of

the objective function of the LPP. The importance of this is that,

apart from removing the possibility of non-existence of inverses of

partitioned matrices which will in turn truncate the existence of the

solution to the linear programming problem, the IPBA simplifies the

attainment of an optimizer and converges at a faster rate. Result

obtained from the numerical illustration gives 






=
7

10*
2

x and

f(*
2

x) = 10, 950 which agrees with that obtained by using either the

simplex method or the Karmarkar’s interior point method.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 950
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

REFERENCES
[1] Etukudo, I. A. and Umoren, M. U., 2008, “Modified Super

Convergent Line Series Algorithms For Solving Linear
Programming Problems”, Journal of Mathematical
Sciences, Vol. 19, No. 1, 73 – 88, International Centre for
Advanced Studies, West Bengal, India.

[2] Pazman, A. (1986): Foundations of Optimum Experimental

Design, D-Reidal Publishings Company, Boston.

[3] Onukogu, I. B. (1997): Foundations Optimal Exploration of

Response Surfaces, Epharata Press, Nsukka, Nigeria.

[4] Onukogu, I. B. (2002): Super Convergent Line Series in

Optimal Designs of Experiment and Mathematical

Programming, AP Express Publishers, Nigeria.

[5] Etukudo, I. A. and Umoren, M. U., 2009, “Modified Super

Convergent Line Series Algorithms For Solving Quadratic
Programming Problems”, Journal of Mathematical
Sciences, Vol. 20, No. 1, 55 – 66, International Centre for
Advanced Studies, West Bengal, India.

[6] Etukudo, I. A. and Umoren, M. U., 2009, “Invariant

Property of the Direction Vector of Linearly Constrained
Optimization Problems with Linear Objective Function”,
Journal of Mathematical Sciences, Vol. 19, No. 1, 73 – 88,
International Centre for Advanced Studies, West Bengal,
India.

IJSER

http://www.ijser.org/

	1 Introduction
	2 INVARIANT PROPERTY BASED ALGORITHM FOR SOLVING LINEAR PROGRAMMING PROBLEMS
	3 AN ILLUSTRATIVE EXAMPLE
	References

